BUS++
Toggle navigation
รายละเอียดงานวิจัย
อาจารย์ ดร. ณัฐรฐนนท์ กานต์รวีกุลธนา
อาจารย์ ดร. ณัฐรฐนนท์ กานต์รวีกุลธนา
ชื่องานวิจัย(Article thai):
ชื่องานวิจัย(Article english):
ชื่อวารสารที่ตีพิมพ์(Journal thai):
ชื่อวารสารที่ตีพิมพ์(Journal english):
บทคัดย่อ (Abstract):
This research compares the capability of data classification models to predict consistent results for a subject’s depression potentiality, track the subject behaviour and recognise facial expressions during PHQ-9 assessments. This research is motivated by the necessity for depression screening and diagnosis, which traditionally relies on observations by experienced physicians or clinical psychologists of symptoms in conjunction with data from questionnaires. However, the field still requires a suitable technological approach that gives more accurate and consistent results. All data used in the present research were collected by combining technologies and compared by using classification models, the goal being to find the machine-learning model that most accurately predicts consistent results for the subjects’ PHQ-9 assessment, behaviours and emotions. The subjects were screened by clinical psychologists and divided into three groups: (i) subjects suffering from depression but not receiving treatment (undertreated subjects), (ii) subjects undergoing depression treatment (subjects undergoing treatment) and (iii) subjects without depression disorder (normal subjects). Related studies have compared the accuracy of classification models to one another. The four most frequently applied classification models in depression-related studies are (i) decision tree (ii) support vector machine, (iii) naïve Bayes and (iv) neural network. All models were analysed, designed and developed before being tested experimentally. The accuracy of the experimental results was tested by using the data analysis tool RapidMiner Studio. The results show that the decision tree model is not only the most accurate for predicting depression potentiality, tracking behaviour and recognising facial expressions during PHQ-9 assessments but also the most suitable.
ผู้วิจัยร่วม(Authors):
1.Natratanon Kanraweekultana 2.Sajjaporn Waijanya 3.Nuttachot Promrit 4.Undaman Nopnapaporn 5.Apisada Korsanan 6.Sansanee Poolphol
ลิงค์ฐานข้อมูลที่เผยแพร่:
ลิงค์ฐานข้อมูล
ข้อมูลการเผยแพร่ (Journal Infomation)
เผยแพร่ระดับ:
ระดับนานาชาติ
ระดับชาติ (TCI)
ปีเผยแพร่:
2567
2568/2025
2567/2024
2566/2023
2565/2022
2564/2021
2563/2020
2562/2019
2561/2018
2560/2017
2559/2016
2558/2015
2557/2014
2556/2013
2555/2012
2554/2011
2553/2010
2552/2009
2551/2008
2550/2007
2549/2006
2548/2005
วันที่เผยแพร่:
วันที่ได้รัการอนุมัติ:
เลขที่ ISBN / ISSN / DOI:
ปีที่พิมพ์ - ฉบับที่ – หน้า:
×
Logout
คุณต้องการออกจากใช่หรือไม่